L ∞-Estimates for nonlinear elliptic Neumann boundary value problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Elliptic Boundary Value Problems

It is the object of the present note to present a new nonlinear version of the orthogonal projection method for proving the existence of solutions of nonlinear elliptic boundary value problems. The key point in this method is the application of a new general theorem concerning the solvability of nonlinear functional equations in a reflexive Banach space involving operators which may not be cont...

متن کامل

On Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations

We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem  −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...

متن کامل

Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem

Parallelization of the algebraic ctitious domain method is considered for solving Neumann boundary value problems with variable coeecients. The resulting method is applied to the parallel solution of the subsonic full potential ow problem which is linearized by the Newton method. Good scalability of the method is demonstrated in Cray T3E distributed memory parallel computer using MPI in communi...

متن کامل

Regularity estimates for elliptic boundary value problems in Besov spaces

We consider the Dirichlet problem for Poisson’s equation on a nonconvex plane polygonal domain Ω. New regularity estimates for its solution in terms of Besov and Sobolev norms of fractional order are proved. The analysis is based on new interpolation results and multilevel representations of norms on Sobolev and Besov spaces. The results can be extended to a large class of elliptic boundary val...

متن کامل

Generalized BSDEs and nonlinear Neumann boundary value problems

We study a new class of backward stochastic di€erential equations, which involves the integral with respect to a continuous increasing process. This allows us to give a probabilistic formula for solutions of semilinear partial di€erential equations with Neumann boundary condition, where the boundary condition itself is nonlinear. We consider both parabolic and elliptic equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2010

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-009-0054-5